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Dislocation kink chain and multiphase periodic processes in the 
bounded sine-Gordon system 

A Paweleki-, M Jaworski and J Zagrodzihki 
Institute of Physics, Polish Academy of Sciences, A1 Lotnik6w 32/46, 02-668 Warsaw, 
Poland 

Received 13 October 1986, in final form 21 December 1987 

Abstract. A finite chain of dislocation kinks in a crystal is considered as a string in the 
Peierls potential. Its behaviour is discussed in terms of multiphase periodic processes in 
the sine-Gordon system under adequate boundary conditions. It has been stated that in 
a particular case (dislocation segment containing kinks of the same width) the oscillations 
of the kink chain may be described by the Jacobi elliptic functions, whereas in a more 
general case (dislocation segment containing kinks of different width) the oscillations of 
the kink chain should be described by the Riemann theta functions. The presented 
description is thus a generalisation of that reported by Kovalev for the dynamics of a single 
Frenkel-Kontorova dislocation in a one-dimensional crystal with fixed boundaries. A 
soliton limit of the kink chain behaviour is also briefly discussed. 

1. Introduction 

The vibration of a dislocation segment in a crystal at low enough temperatures (when 
the thermal kink pairs are not created) can be described in a good approximation by 
the string model (Koehler 1952, Granato and Lucke 1956) provided that both ends of 
the segment lie in the same valley of the Peierls potential. In general, however, a 
segment does not lie in a single Peierls valley, but rather forms a dynamic system of 
specific kink configuration as shown in figure 1 for a static case, where all the kinks 
are of the same width. Then the behaviour of the dislocation segment is better described 
by the kink-chain model (Brailsford 1961, Seeger and Schiller 1962, Alefeld 1965). 
The analytical formula for the shape of a kinked dislocation segment is well known 
only in the simplest cases, i.e. for a one-kinked infinite dislocation line with a static 
kink (e.g. Hirth and Lothe 1972, Schoeck 1980) as well as with a moving one (e.g. 
Kosevich 1978, 1979, PaweIek 1985), but to our knowledge the general case of the 
many-kinked dislocation segment has not been considered in the literature. 

In order to consider that case we start from the known fact, first pointed out by 
Seeger and Schiller (1966), Seeger and Engelke (1968) and recently rediscovered by 
Kosevich (1978, 1979), that the problem of the motion of a dislocation as a string in 
the Peierls potential without damping and external forces is equivalent to the problem 
of the dislocation motion in the atomic one-dimensional Frenkel-Kontorova ( FK) 

model (Frenkel and Kontorova 1938, Frenkel 1972). This equivalence says that the 
atom motion in an infinite one-dimensional crystal in the FK model and the motion 
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Figure 1. A static many-kinked dislocation segment spanned across the relief of the 
sinusoidal Peierls potential as the sine-Gordon system with boundary conditions $(x = 0) = 
0 and $(x = L) = 2 7 "  where $ is the total displacement of atoms in dimensionless units. 

of the infinite one-kinked dislocation line considered as a string in the Peierls potential 
are both governed by the sine-Gordon ( S G )  equation 

i,bt, - &+sin 4 = 0. (1) 

In (1) $(x, t )  is the function describing the dimensionless displacement of atoms (in 
the FK model) or the function describing the shape of an infinite one-kinked dislocation 
line (in the string model with Peierls potential and under boundary conditions 
$(-CO, t )  = O  and $(+a, t )  = a, where a is the distance between adjacent Peierls 
valleys). Moreover, a simple physical interpretation of this equivalence has recently 
been given (e.g. Pawelek 1985), and also applied to the description of the thermo- 
dynamic equilibrium of kinks on a dislocation segment (Paweiek 1987a, b, 1988) as 
well as to a possible soliton description of the acoustic emission induced by plastic 
deformation of crystals (Pawelek 1987a, b, 1988). Thus each geometrical kink in a 
static chain (figure 1) as well as in a dynamic chain (where, in general, the kinks 
moving at different velocities are of different width) may be considered as a one- 
dimensional FK dislocation. Therefore a many-kinked dislocation segment, being a 
finite chain of kinks, can be treated as a string spanned across the Peierls potential 
relief under boundary conditions given by 

+(x=O, t ) = O  and $(x = L, t )  = 27rm (2) 

where m is the number of kinks in the chain. 

2. Application of the Riemann theta function 

In order to describe the dynamics of the many-kinked dislocation segment we should 
search for the multiperiodic solution of (1) which satisfies conditions (2). It appears 
that what is required for this purpose is just the Riemann theta function (e.g., Dubrovin 
et al 1976, Dubrovin and Natanson 1982, Kozel and Kotlarov 1976, Date and Tanaka 
1976, Matveev 1976) as frequently discussed (Zagrodzihski 1981, 1983, 1984a, b, 
Jaworski and Zagrodzidski 1982) in the context of non-linear partial differential 
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equations (NLPDE). The method of the Riemann 0 function allows us to find a broader 
class of NLPDE solutions than those expressible in terms of elliptic Jacobi functions. 
The solutions are in general quasi-periodic which means that they are a ‘non-linear’ 
superposition of g-periodic processes, having, however, incommensurate periods as a 
rule. According to this method a general g-phase quasiperiodic solution of ( l) ,  obtained 
from the theory of Abelian integrals (Kozel and Kotlarov 1976), is given by 

where e( z I B )  is the Riemann theta function defined by 

~ ( z l ~ )  = C exp(2ri(n, z)+irr(n, Bn)). (4) 
n € Z g  

In (3) and (4) the vector z with the components 

Zj = KjX Ajt f Zoj j =  1, .  . . , g  ( 5 )  

belongs to a g-dimensional complex vector space Cg, while the vectors n with integer 
components form the g-dimensional lattice Z g .  The matrix B E Cgxg is the Riemann 
matrix and e is the g-dimensional vector, all components of which are equal to unity. 
The expression (3) is a solution of ( 1 )  if K ~ ,  A,, zoj and B are determined by the Abelian 
integrals on the suitable Riemann surface, or according to another approach when an 
adequate system of dispersion relations is satisfied. The dispersion equations derived 
for the SG equation by Zagrodzihski (1983) or in an equivalent form by Dubrovin and 
Natanson (1982) have the following form (for all p E 2; where 2: is the g-dimensional 
unit cube): 

2 f ~ q ( 0 ) A p q  - ~ f ” ( 0 )  = -(-1)(”9ep(0) 
P .  4 

where Lpq = d 2 f / d p  d q ,  Ap4 = K ~ K ~  - hpAq and 

f ” ( w ) =  8(2w+Bpl2B) exp(2ri(p,  w ) ) .  

In general, for arbitrary complex z and B, expression (3) is also complex. Physically 
we are interested in real solutions only, and the reality condition imposes constraints 
on the admissible form of z and B (see table 1; quantities z and B are not unique 
since they can also be determined modulo symplectic transformation (Zagrodzihski 

Table 1. Conditions imposed upon B and z for the reality of 
dently, p and 7) are real). 

( r l  and r2 = + 1  indepen- 

g Type of wave B Z 

1 oscillating (0) 
rotational (R) 

2 oscillating-oscillating (00) 

2 oscillating-rotational (OR) 

rotational-rotational ( RR) 

is 
iq  + r1/4 

[ ‘ 7 2  ?] 
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1984b)). For g = 1 there are two types of solutions, which by analogy with the motion 
of a pendulum can be named as oscillatory and rotational. In the case of g = 2 we 
have three types of solutions which are a 'non-linear' superposition of the two elemen- 
tary oscillating and/or rotational processes. For g > 2 the situation is similar and there 
always exists a set of g + 1 different types of real solutions. It should be noted that 
the oscillatory type of solution is bounded by 0 and 27r (or *7r) which corresponds 
to the dislocation segment oscillating in a single Peierls valley. On the other hand, 
the rotational solution is not bounded, i.e. both ends of the dislocation segment lie in 
different Peierls valleys. It is clear that the boundary condition (2) can be satisfied by 
the rotational solution; thus in this paper we shall confine our attention to this type 
of solution. 

3. Dynamics of a many-kinked dislocation segment 

In order to describe the oscillations of many-kinked dislocations by the g-phase 
quasiperiodic solution expressed by the Riemann theta functions it is necessary to 
verify whether the real solution in form (3) fulfils both boundary conditions (2). 
Expression (3) is real provided 6 ( z +  e / 2 / B )  = 6 * ( z l B ) ,  where the asterisk denotes 
the complex conjugate, and then 

Consequently the boundary condition (2) may be rewritten in the form 

Im 6(0 ,  t I B )  = 0 for --CO< t < +-CO (9) 

and 

odd } for -co< t < + m .  Re 6(L,  t lB)=O 
I m 6 ( L , t l B ) = O  m even 

A quasiperiodic solution fulfils the condition 

$ ( x + L ,  t +  T) = $(x, t )  (mod 27r) (11) 
where L and T are the space and time periods, respectively. This means that there 
exist vectors p, r E Zg, i.e. with integer components, such that by ( 5 )  

KL+AT=Bp+r  (12) 
where K = ( K ~ ,  . . . , K ~ ) ,  A = ( A l , .  . . , A g ) .  In fact, due to the general formula (e.g., 
Zagrodzinski 1982) for p, r E Zg 

w + B p + r I B )  =exp[-i.rr(2(z,p)+(p, ~ p ) ) l e ( z l ~ )  (13) 
we have just (11) since 

6 [  K ( X  L )  + A ( t  + T) + zo+ e/2 I B ]  
2i In 

6 [  K ( X  + L )  + A ( t  + T) + zo I B ]  

e ( z  + ~ p +  r + e/2 1 B )  
6 ( z + Bp + r I B ) 

= 2i In 

6(x + t + zo+ e/2 I B )  
6(x + t + zo I B )  = 2i In + 2 d e ,  P). 
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Now, boundary condition (10) taken for t + t + T becomes 

e ( z + ~p + r 1 B ) * 8 ( z + ~p + r + e /  2 I B ) 

= exp[-i7~(2(z, p ) + ( p ,  B ~ ) ) ] [ B ( Z  1 B )  * e ( z +  e /2(  B ) ( - I ) ( ~ ~ ~ ) ]  ( 1 5 )  

and will be satisfied by (9) if for m = even (odd) ( e ,  p )  is simultaneously even (odd). 
Thus we have proved that having the solution satisfying boundary condition (9), i.e. 
at point x = 0, then condition (10) is also satisfied; however, we do not know whether 
m ought to be even or odd. On the other hand if the solution is pure periodic in space, 
then the question of the boundary conditions is trivial, but there arises the problem 
how to select among quasiperiodic solutions those which are pure periodic. In contrast 
to ( 1  l ) ,  the pure periodic (in space) solutions have the property 

ccl(x+ L, t )  = ccl(x, t) (mod 2 7 ~ )  (16) 

i.e. implying that T = 0 in equation (12). Since the SG equation is invariant under the 
Lorentz transformation, solution (8) will be periodic in space if there exists 6 E R such 
that for some p ,  r E Zg the following relation holds 

( K  cosht+A s i n h t ) L = B p + r .  (17) 

Since K and A are determined by the matrix B via dispersion equations (6) ,  relation 
(17)  represents an additional restriction upon the class of admissible B matrices. It 
is clear that, if the periodic (in space) solution satisfies 4(0, t )  =0,  it satisfies also 
condition $( L, t )  = 2rm provided that ( e ,  p )  = m. Thus it is seen from the vectorial 
equation (17) that the reduction of the quasiperiodic process to the periodic one poses 
the question of an adequate choice of 6 that should meet the following conditions 

where q k  are the components of vector q = Bp + r, p ,  r E Zg. We shall prove that for 
given p ,  r E Zg, solution (8) can be reduced by the Lorentz transformation to the solution 
either purely periodic in space or purely periodic in time. Indeed, there exist such L 
and T E R for the solution (8) that for given p ,  r E Zg, equation (12) is satisfied. Let 
us now assume that I L( > 1 TI and denote K 2  = L2 - T2.  Thus 

L =  K cosh 6 T =  K sinh 6 tanh 6 = T/L (19) 

( K  cosh ( + A  sinh 6 ) K  = B p + r .  (20) 

and (12) becomes 

This just means that (17) holds and the solution (8) after the Lorentz transformation 
with parameter 6 is purely periodic in space. If lL( < I TI holds, then a similar procedure 
will give a solution purely periodic in time. In terms of spectral representation related 
to the SG equation (Zagrodzinski 1984, Dubrovin 1981), the Lorentz transformation 
with parameter 6 means that all the points of the main spectrum ( E , ,  . . . , E 2 g )  are 
transformed into new ones ( E : ,  . . . , Ehg)  and 

1+tanh 6 
1 -tanh 6 E I = E i  i = 1 , .  . * ,  2g. 

This statement allows us to exclude the case ILI = IT[, since then all the points of the 
main spectrum Ei  would be reduced to single points: zero or infinity, which is 
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impossible. Thus, in general, solution (8) satisfying a boundary condition at point 
x = 0, i.e. condition (9), satisfies also the condition at x = L, i.e. condition (lo), although 
the ‘parity’ of m is unknown. Moreover there is the possibility of the reduction of a 
quasiperiodic solution to the pure periodic one by a proper choice of the Lorentz 
parameter 6. (We have no proof that the considered solution will be periodic in space 
but the experience of the authors gained so far indicates that we have always two 
families of solutions-one reducible to periodic in space and the other in time.) 

Thus the determination of the wavevectors K~ and angular frequencies A,  in the 
solution (12) leads to a general description of the dynamics of a finite many-kinked 
dislocation segment. In order to find the effective solutions we should solve in each 
particular case the system of dispersion equations (6) with respect to K,, hj ,  j = 1, 2, 
3, for a given B matrix. A more simplified way to find the solutions (8) can be realised 
by the assumption of the approximated form of the dispersion relations (e.g., 
Zagrodzihski and Jaworski 1982), similar to the case of our other recent calculations 
(Pawelek and Jaworski 1988). However, in this paper we intend to present rather 
schematic illustrations of these solutions and the detailed calculations will not be 
quoted here. On the other hand the general solutions, being a dynamic shape of a 
many-kinked dislocation segment, can be more easily deduced from the simplest case 
of the oscillations of a one-kinked dislocation and its interaction with fixed boundaries. 
Hence this case will be discussed below in more detail and some other more general 
examples deduced from it will be considered in a schematic way only. 

4. Examples 

We consider firstly the oscillations of the one-kinked ( m  = 1) dislocation segment under 
boundary conditions (2). In this case the solution (8) is of a two-periodic character 
and thus, according to general relations between Riemann theta function and Jacobi 
elliptic functions (derived recently, e.g., by Zagrodzihski 1982), it can be expressed in 
terms of Jacobi elliptic functions. It follows from these relations that the oscillations 
of the one-kinked dislocation are described just by the same formula as found by 
Kovalev (1979) for a single FK dislocation oscillating in a one-dimensional crystal with 
fixed boundaries 

$(x, t )  = 4  tan-’[(k’/l’)’/’ dn(at, 1) tn( yx, k ) ] .  (22) 

(23) 

In the above equation 
LY = [( 1 - k’/  1’)(  1 - k’l’)]”’’ y = LY ( k ’ /  1’)”’ L= K ( k ) / c y  
whereas dn(u, k ) ,  tn(u, k )  =sn(u, k)/cn(u, k )  are the Jacobi elliptic functions of the 
argument U and modulus k ( k ’  = (1 - k2) ’ /* ,  I‘ = (1 - 1 2 ) ’ / ’ ,  0 < k, 1 < l),  and K ( k )  is 
the complete elliptic integral of the first kind. The solution (22) was discussed also 
by Costabile et a1 (1978) and DeLeonardis et a1 (1980) in relation to the problem of 
boundary conditions imposed on the sine-Gordon equation. They considered a narrow 
class of SG equation solutions expressible by the elliptic functions and commonly 
known as the Lamb ansatz (Lamb 1971). Expression (22) describes the two-phase 
periodic solution since it represents two identical waves travelling in opposite directions 
with equal velocities (figure 2). 

From this behaviour we can deduce now the behaviour of a many-kinked dislocation 
segment satisfying the boundary conditions (2). 

We consider below the following simple examples: 
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Figure 2. Schematic illustration of the oscillations of the one-kinked dislocation segment. 

( i)  a one-periodic static kink chain (see figure l),  
(ii) an even number of kink-trains travelling pairwise in opposite directions with 

(iii) a 'non-linear' superposition of cases (i) and (ii). 
equal velocities, and 

Note that each kink-train may have more than one kink within the dislocation segment. 
Thus an m-kinked segment corresponds, in general, to a g-periodic solution, where 
1 G g s 2m. For instance, figure 3 shows a many-kinked ( m  = 6) dislocation segment 
consisting of two kink-trains travelling in opposite directions with the same velocities. 
Thus, when choosing g = 2 ,  the case m = 6 admits the solution in terms of the Lamb 
ansatz, similarly to the case illustrated in figure 2. However, according to our knowl- 
edge, it is impossible to express the general multiperiodic solution in terms of the 
Jacobi elliptic functions, as in the case of the Lamb ansatz, since the technique of 
separability of the variables does fail. 

Below we consider the simplest non-trivial case which cannot be solved by means 
of the Lamb ansatz and Jacobi elliptic functions. Let us take a two-kinked dislocation 
segment ( m  = 2) having one kink stationary and the other moving with velocity 11. 
Similarly to figure 2 ,  the moving kink is accompanied by a virtual kink travelling in 
the opposite direction at the same velocity. Thus the total number of phases is g = 3. 
The solution belongs to the rotational type (see table l), hence z,,., = a ,  while K.,, A., and 
B,, are purely imaginary. In addition, the symmetry of the problem implies: A I  = 0 
(stationary process), A 2  = - A 3 ,  BI2 = Bl3, = B,, (equal velocities in opposite direc- 
tions). Figure 4 shows schematically oscillations of the dislocation segment consisting 
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Figure 3. An example of the many-kinked dislocation segment ( m  = 6 )  as two kink-trains 
( g  = 2) travelling in opposite directions. Observe that the absolute values of all velocities 
are equal. 
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Figure 4. Schematic illustration of the oscillations of a two-kinked dislocation segment 
consisting of one static kink and one moving kink ( m  = 2, g = 3).  
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of one moving and one stationary kink. The stationary kink is at rest when no interaction 
takes place, but it experiences a phase shift during the interaction with the moving 
kink (marked by an arrow). In a similar way one can also find other solutions for 
many-kinked dislocation segments being a non-linear superposition of the cases (i) 
and (ii). Furthermore we may consider a slightly general case, illustrated in figure 5 ,  
where both kinks are moving but at different velocities (still m = 2 ) .  One can see two 
pairs of kink-trains where both kink-trains in each pair are travelling in opposite 
directions at the same velocities but different for each pair (thus g = 4). The above 
examples show clearly that the solutions (3) expressed by the Riemann theta function 
form a much broader class than those obtained by the Lamb ansatz and expressed by 
the Jacobi elliptic functions. We believe that these examples reflect quite well the 
dynamic behaviour of at least those kink chains which are long and sloping to the 
direction of Peierls valleys at not so great angles, i.e. when the kink chain may be 
approximately regarded as a superposition of the isolated kinks. For great slope angles 
the non-linear superposition is important and the dynamic shape of the kink chain 
should be calculated in detail. 

,--a 
7 

- .e------ + -  
3- 

S - 
/4-- 

*F 

-.-- 6-” - ,-- __. 
* _- -7- 

Figure S. Schematic illustration of the oscillations of a two-kinked dislocation segment 
consisting of both moving kinks at different velocities ( m  = 2, g = 4); note that in a general 
case the velocities may be incommensurate, resulting in quasiperiodic oscillations in time. 



2736 

_r 

A Paweiek, M Jaworski and J Zagrodzin’ski 

. ’  
X 

_ - -  - ---- ------ 

Virtual  dislocation 
I 

iines $ 1  

Moreover, one can also discuss briefly the soliton limit of the above quasiperiodic 
solutions in the spirit of the limiting procedure introduced by Zagrodzihski and Jaworski 
(1982) or Zagrodzihski (1984a) by applying the so-called T-function. These limiting 
situations would then have a physical interpretation as a many-kinked infinite disloca- 
tion line. In a particular case when all the kinks have different velocities, the g-periodic 
solution will tend to the g-soliton process along the infinite dislocation line. For 
instance, in the limiting case of two-periodic solution (22), i.e. when L +  CO ( k ,  l +  1, 
k ’ / l ’ +  U ) ,  it is reduced to the well known pure soliton-soliton solution (Kovalev 1979, 
DeLeonardis et a1 1980): 

U sinh[x/(l-  v2)”*]  
cosh[ u t /  ( I  - U’)”’ ]  

$(x, t )  = 4 tan-’ 

which describes the motion and interaction of the half-infinite one-kinked dislocation 
line with a fixed boundary at x = 0 ( $ ( O ,  t )  = 0 and $(+CO, t )  = 2 7 ~ ;  see figure 6). 

5. Summary and conclusions 

In our concluding remarks we would like to emphasise that the description of the 
dynamics of an m-kinked dislocation segment presented here is valid also for the 
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dynamics of many FK dislocations in a one-dimensional crystal with fixed boundaries. 
Thus it is a generalisation of that presented by Kovalev (1979) for a single F K  dislocation 
only. Moreover, we would like to point out that such an approach to the dislocation 
kink chain, as presented here, implies that there is no necessity to distinguish the string 
model (in the sense of a dislocation segment spanned across the relief of the Peierls 
potential) from the kink-chain model since in the latter the behaviour of the chain is 
a specific form of the behaviour of dislocation string oscillating across many Peierls 
barriers under adequate boundary conditions. A better agreement of the kink-chain 
model with low-temperature experimental data (e.g., on internal friction below the 
Bordoni peak) than of the classical string model (i.e. in the sense of the dislocation 
segment vibrating in a single Peierls valley) is due to the fact that the prevailing 
contribution to this phenomenon is provided by many-kinked dislocation segments 
rather than by non-kinked or by the segments with a small number of kinks (Brailsford 
1961, Alefeld 1965). At high temperatures, above the Bordoni peak, the predictions 
of the kink-chain and string models give similar results (Seeger and Schiller 1962, 
Suzuki and Elbaum 1964, Seeger and Engelke 1968) since the kink chain behaves 
strictly as a classical string because the Peierls barriers may be disregarded at this 
temperature. 

Eventually, the following conclusions may be formulated. 
(i) A many-kinked dislocation segment, being a finite chain of kinks, can be treated 

as a string oscillating across the relief of the sinusoidal Peierls potential. 
(ii) The two-periodic solution ( 2 2 )  expressed by the Jacobi elliptic functions may 

describe the oscillations of the m-kinked dislocation segment in particular cases only 
when all kinks are of the same width; then the admissible kink velocities are *U. 

(iii) The multiphase solution (8), expressed by the Riemann theta function, may 
describe the dynamics of the m-kinked dislocation segment in a more general case; 
the order of the &function cannot exceed 2m. 

(iv) In the limiting cases the multiperiodic solutions can be reduced to the multi- 
soliton solutions and thus they describe the dynamics of the infinite many-kinked 
dislocation line. 
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